葡京会官方网站app

首页
热点新闻
2022-12-12
12月10日下午,高速铁路建造技术国家工程研究中心第二届技术...
最新公告
2022-12-13
中南大学葡京会官方网站app研究生学位论文评审管理办法为规范研究...
站内搜索
学术报告
当前位置: 首页 >> 学术报告 >> 正文

Pore-scale Modelling of Multiphase Flow in Heterogeneous Porous Materials--中南大学名师名家学术论坛

发布时间:2022-12-12    浏览次数:


报告题目:Pore-scale Modelling of Multiphase Flow in Heterogeneous Porous Materials--中南大学名师名家学术论坛
报 告 人:甘益翔(Yixiang Gan)
主 请 人:
时  间:2022年12月13日(周二) 下午14:00
地  点:腾讯会议,会议号:426-424-038

甘益翔(Yixiang Gan),澳大利亚悉尼大学葡京会官方网站app副院长,纳米研究中心(Sydney Nano Institute)副主任。2008年博士毕业于德国卡尔斯鲁尔理工学院(KIT),博士论文成绩获得了德国最高荣誉(summa cum laude),随后两年在KIT从事博士后研究工作,2010年加入悉尼大学葡京会官方网站app,获得终身教职、博导。研究方向主要包括颗粒材料和多孔介质的力学和物理问题,关注材料和细观结构的非均质、多相和多物理场特性,累计主持澳洲和国际研究项目10余项,总金额超过三百万澳元,共发表国际期刊论文130余篇,培养博士后、博士和硕士研究生20余人,研究成果已在新能源和可持续建筑材料领域产生应用。甘益翔博士与多所国际顶尖大学和研究机构建立了广泛而紧密的科研合作,如法国巴黎路桥学院(Ecole des Ponts)和英国牛津大学(Oxford)等。

报告简介:

In nature and synthetic porous materials, various forms of heterogeneity can be observed and are shown to determine the multiphase interactions in the pore space. Here, we will discuss the combined effects of wettability and structural heterogeneities, with a special emphasis on materials with hierarchical structures. Examples include electrode materials in batteries, fibrous membranes in PEM fuel cells, and fractured rocks in geothermal extraction, which are generally composed of two components with distinct characteristic length scales. To this end, we utilise numerical models to capture the interface dynamics and to model the fluid displacement processes in porous materials with variable pore structure and sizes. We emphasise the following aspects: how such heterogeneous pore structures influence fluid-fluid displacement, and most importantly, to what extent the immiscible fingering can be suppressed and controlled through tailored design of microstructure. To characterise fingering dynamics in heterogeneous porous materials, we provide phase diagrams unifying the coupled contributions from pore structure, wettability and flow conditions. The present study provides an alternative mechanism for controlling the temporal and spatial distribution of fluid phases within porous materials for specific applications, e.g., increased drainage efficiency, or enhanced chemical reaction rate.